Estymacja parametrów modelu liniowego z jedną zmienną objaśniającą przy pomocy Excela

W tym wypadku rozpatrujemy liniowy model ekonometryczny o postaci: $y_t = \alpha_0 + \alpha_1 X_t + \xi_t$, lub $y_t = \alpha_0 + \alpha_1 t + \xi_t$.

Przykład. Na podstawie następujących obserwacji zmiennych Y, X1 i X2

t	Уt	Xt
1	5	1
2	6	3
3	8	3
4	8	5
5	10	6
6	11	8
7	13	9

Oszacować parametry strukturalne modelu liniowego opisującego zależność zmiennej Y od zmiennych X.

Sposób 1. (funkcja - równania regresji)

W celu oszacowania wspomnianych w poleceniu parametrów a₀, a₁ posłużymy się właśnie Excelem. Na wstępie wprowadzamy dane do arkusza.

	А	В	С	D	E
1					
2					
3					
4		t	Y	Х	
5		1	5	1	
6		2	6	3	
7		3	8	3	
8		4	8	5	
9		5	10	6	
10		6	11	8	
11		7	13	9	
12					
13					

Następnie korzystając z gotowych formuł wybieramy funkcję REGLINP

a1	a0				
=REGL	INP(
REGI	INP(znane_y	; [znane_x]	; [stała]; [s	tatystyka])	

Znane_y zaznaczamy wartości zmiennej Y; znane_x zaznaczamy wartości zmiennej X; stała wpisujemy prawda (stała to tzw. wyraz wolny; w przypadku wyboru prawda wyraz wolny czyli parametr a0 będzie liczony); statystyka ustawiamy na fałsz. Następnie wciskamy kombinację klawiszy CTRL+SHIFT+ENTER. Otrzymujemy następujący wynik:

Zatem model przybiera postać:

$$y_t = 4,01 + 0,94X_t + \xi_t$$

Sposób 2. (wykresy rozrzutu)

Zaznaczamy wartości zmiennej Y oraz X i w menu **Wstawianie** wybieramy opcję wykresu punktowego.

W wyniku tej operacji otrzymujemy wykres postaci:

Ponieważ wartości X są przedstawione na osi pionowej a Y na osi poziomej należy dokonać zamiany osi. W tym celu klikamy na dowolną wartość osi X lub Y prawym przyciskiem myszy i wybieramy opcję **zaznacz dane**.

Estymacja parametrów modelu liniowego klasyczną metodą najmniejszych kwadratów – Excel – część 2

Wówczas otwiera nam się okno edycji osi i danych wykresu.

Wybieranie źródła danych		?	×
Zakres danych wykresu: =Arkusz1!\$C\$4:\$D\$11			1
Przełącz w	viersz/kolumnę		
Wpisy legendy (serie danych)	Etykiety osi poziomej (kategorii)		
Dodaj 🔂 Edytuj 🗙 Usuń 🔿 🗸	Edytuj		
🖌 X	5		
	6		- 11
	8		- 11
	8		
	10		
Uk <u>r</u> yte i puste komórki	ОК	Anu	ıluj

Klikając Edytuj dokonujemy wskazania właściwych danych opisujących osie.

Edytowanie serii		? ×
<u>N</u> azwa serii:		
=Arkusz1!\$D\$4	1	= X
Wartości <u>X</u> serii:		
=Arkusz1!\$C\$5:\$C\$11	1	= 5; 6; 8; 8; 10
Wartości <u>Y</u> serii:		
=Arkusz1!\$D\$5:\$D\$11	<u>+</u>	= 1; 3; 3; 5; 6;
	OK	Amului
	OK	Anuluj

Finalnie otrzymujemy wykres postaci:

Następnie klikając prawym przyciskiem myszy na dowolny punkt wykresu wyświetla nam się menu:

Klikamy opcję **Dodaj linię trendu** ...

W wyniku tej operacji pojawia się okno **Formatowanie linii trendu**, którego zawartość pozwala na wykreślenie na wykresie dowolnego dostępnego trendu. Ponieważ naszym celem jest oszacowanie funkcji liniowej to taką też należy zaznaczyć ⁽³⁾. Dodatkowo zaznaczamy również opcję Wyświetl równanie na wykresie. Pozwoli to nie tylko na wykreślenie prostej regresji ale również na podanie jej równania. W wyniku tego otrzymujemy:

Kolejnymi sposobami jakie możemy wykorzystać w celu oszacowania parametrów modelu z jedną zmienną objaśniającą są metody (podejścia) przedstawione na poprzednich zajęciach - Estymacja parametrów modelu liniowego klasyczną metodą najmniejszych kwadratów – Excel – część 1:

Sposób 3. (macierzowy)

Sposób 4. (wykorzystanie narzędzia ToolPak czyli Analiza danych)

W przypadku modelu:

$$y_t = \alpha_0 + \alpha_1 t + \xi_t$$

postępowanie jest analogiczne, z tą jednak różnicą, że zmienną X zastępuje zmienna czasowa t.

Zadania do samodzielnego rozwiązania:

17. Na podstawie zawartych w tablicy 2.25 danych

Tablica 2.	25
------------	----

y _t	12	21	26	27	34
x _t	1	8	10	12	14

Źródło:	dane	umowne.	
Zródło:	dane	umowne.	

(a) Oszacować parametry strukturalne modelu $Y_t = \alpha_0 + \alpha_1 X_t + \varepsilon_t$ i zinterpretować otrzymane wyniki.

2.5. Udział braków w ogólnej ilości wyprodukowanych wyrobów wyrażony w promilach w pewnym zakładzie produkcyjnym w latach 1979 - 1985 kształtował się następująco:

lata	1979	1980	1981	1982	1983	1984	1985
y _t	13	12	10	9	8	6	5

Oszacować parametry strukturalne

٠